当前位置:100EC>数字金融>《中国数字金融反欺诈全景报告(2019)》(PPT)
《中国数字金融反欺诈全景报告(2019)》(PPT)
发布时间:2020年01月16日 09:59:57

(网经社讯)· 数字技术为金融发展提供新动力,但也为金融欺诈提供了可乘之机,对金融机构和金融科技企业的风控提出了严峻挑战。数字金融欺诈不仅会造成企业经济损失,还会影响企业品牌声誉,甚至对数字金融行业的普惠目标和创新发展带来负面影响。 

· 对金融机构与金融平台而言,数字金融欺诈带来了黑产化、专业化、高频化、关联化四大威胁。对数字金融用户安全来说,数字金融欺诈随着金融科技发展,呈现出欺诈地域广泛化、受骗人群年轻化、欺诈事件小额化以及欺诈手法多元化的新挑战。 

· AI和数据技术的有机结合改变传统反欺诈的被动防御局面,帮助企业化被动为主动,提前拦截欺诈发生。以乐信为代表的案例,充分展示AI技术对于反欺诈的重要作用。乐信打造了集数据、技术和机制于一体的全AI反欺诈体系,大幅提高事前欺诈识别率、欺诈应对效率以及事后欺诈案件挖掘效率。据调研结果显示,乐信欺诈率仅为0.003BP,而2018年银行卡欺诈率约为1.16BP,说明乐信欺诈风险远低于行业平均水平,位列国内反欺诈技术服务领域的第一阵营。 

· 数字金融反欺诈离不开数据、技术与场景的有机结合,更需要平台用户、金融机构、相关企业、监管、执法部门以及社会舆论力量的全方位参与。此外,在“数据孤岛”带来的挑战与保护用户隐私安全的监管要求下,反欺诈要适应“小数据”环境,对存量数据深度挖掘,实现数据的精细化运营。

目录 

一、序言

二、数字金融欺诈的缘起、演进及现状

2.1 数字金融欺诈的演进及发展

2.1.1 欺诈、金融欺诈与数字金融欺诈

2.1.2 金融欺诈的演进历程

2.1.3 日益繁杂的金融欺诈种类

2.2 数字金融欺诈的四大典型特征

2.2.1 黑色产业链成熟化,且规模庞大

2.2.2 欺诈技术专业化,且更迭快速

2.2.3 欺诈事件高频化,且成本低廉

2.2.4 欺诈行为关联化,且异地高发

三、数字金融时代下欺诈事件洞察与受欺诈人群画像分析

3.1 欺诈事件洞察 8

3.1.1 欺诈事件数量:年均降幅超20%,各月总体呈下降趋势

3.1.2 欺诈金额分布:2000元以下小额诈骗比重提高

3.1.3 欺诈类型:中介诈骗占比最高

3.2 受欺诈人群画像分析

3.2.1 地域特征:中东部地区欺诈事件集中

3.2.2 性别特征:男性更易被骗,女性更易遭受薅羊毛

3.2.3 年龄特征:受欺诈人群年轻化,90后人群最易遭受欺诈

3.2.4 学历特征:受欺诈人群中,专科学历占比超44%,博士学历占比仅0.1%

3.2.5 受欺诈时间段分布:下午为欺诈事件高峰期,用户易遭受欺诈

四、数字金融反欺诈的新形势:AI赋能反欺诈

4.1 新形势:金融反欺诈的攻防博弈

4.1.1 Round1:线下金融欺诈 vs 传统金融反欺诈

4.1.2 Round2:互联网金融欺诈 vs 互联网金融反欺诈

4.1.3 Round3:数字金融欺诈 vs 数字金融智能反欺诈

4.2 数字金融反欺诈的生态链

4.3 新手段:AI赋能,让反欺诈更智能

4.3.1 AI成为数字金融反欺诈的主流选项

4.3.2 场景、数据和技术是人工智能反欺诈系统的三大关键要素

4.3.3 AI赋能数字金融反欺诈的实例分析

案例一:乐信:全AI反欺诈体系

案例二:DataVisor:无监督反欺诈机器学习

案例三:中诚信征信:万象智慧风控体系

案例四:慧安金科:半监督主动式机器学习

五、数字金融反欺诈的挑战及建议

5.1构建数据、技术与场景三位一体的反欺诈体系

5.1.1 数据方面:适应“小数据”环境,与征信数据互补共享

5.1.2 技术方面:探索“联邦学习”,强化反欺诈系统的核心

5.1.3 场景方面:尽量细分,针对性设计反欺诈体系

5.2 营造用户、金融机构及企业、监管部门和社会舆论全方位参与的反欺诈生态

附录1:常见的数字金融欺诈作案工具

附录2:十大常见数字金融欺诈手法及防范指南

全文下载:中国数字金融反欺诈全景报告(2019)》(来源:零壹智库Pro 编选:网经社)

浙江网经社信息科技公司拥有17年历史,作为中国领先的数字经济新媒体、服务商,提供“媒体+智库”、“会员+孵化”服务;(1)面向电商平台、头部服务商等PR条线提供媒体传播服务;(2)面向各类企事业单位、政府部门、培训机构、电商平台等提供智库服务;(3)面向各类电商渠道方、品牌方、商家、供应链公司等提供“千电万商”生态圈服务;(4)面向各类初创公司提供创业孵化器服务。

网经社“电数宝”电商大数据库(DATA.100EC.CN,免费注册体验全库)基于电商行业17年沉淀,包含100+上市公司、新三板公司数据,150+独角兽、200+千里马公司数据,4000+起投融资数据以及10万+互联网APP数据,全面覆盖“头部+腰部+长尾”电商,旨在通过数据可视化形式帮助了解电商行业,挖掘行业市场潜力,助力企业决策,做电商人研究、决策的“好参谋”。

【投诉曝光】 更多>

【版权声明】秉承互联网开放、包容的精神,网经社欢迎各方(自)媒体、机构转载、引用我们原创内容,但要严格注明来源网经社;同时,我们倡导尊重与保护知识产权,如发现本站文章存在版权问题,烦请将版权疑问、授权证明、版权证明、联系方式等,发邮件至NEWS@netsun.com,我们将第一时间核实、处理。

        平台名称
        平台回复率
        回复时效性
        用户满意度
        微信公众号
        微信二维码 打开微信“扫一扫”
        微信小程序
        小程序二维码 打开微信“扫一扫”